3.239 \(\int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=156 \[ \frac {64 a^3 \sin (c+d x) \sqrt {\sec (c+d x)}}{21 d \sqrt {a \sec (c+d x)+a}}+\frac {16 a^2 \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[Out]

2/7*a*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/7*(a+a*sec(d*x+c))^(5/2)*sin(d*x+c)/d/sec(d*x+c)^
(5/2)+64/21*a^3*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2)+16/21*a^2*sin(d*x+c)*(a+a*sec(d*x+c))^(1/
2)/d/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {3812, 3809, 3804} \[ \frac {64 a^3 \sin (c+d x) \sqrt {\sec (c+d x)}}{21 d \sqrt {a \sec (c+d x)+a}}+\frac {16 a^2 \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(7/2),x]

[Out]

(64*a^3*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(21*d*Sqrt[a + a*Sec[c + d*x]]) + (16*a^2*Sqrt[a + a*Sec[c + d*x]]*Si
n[c + d*x])/(21*d*Sqrt[Sec[c + d*x]]) + (2*a*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(7*d*Sec[c + d*x]^(3/2))
 + (2*(a + a*Sec[c + d*x])^(5/2)*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2))

Rule 3804

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[(-2*a*Co
t[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rule 3809

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*m), x] + Dist[(b*(2*m - 1))/(d*m), Int[(a + b*C
sc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
&& EqQ[m + n, 0] && GtQ[m, 1/2] && IntegerQ[2*m]

Rule 3812

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(Cot[
e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*(m + 1)), x] + Dist[(a*m)/(b*d*(m + 1)), Int[(a + b*Csc
[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && EqQ[m
 + n + 1, 0] &&  !LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx &=\frac {2 (a+a \sec (c+d x))^{5/2} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {5}{7} \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 a (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{7 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (a+a \sec (c+d x))^{5/2} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{7} (8 a) \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {16 a^2 \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{7 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (a+a \sec (c+d x))^{5/2} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{21} \left (32 a^2\right ) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {64 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{21 d \sqrt {a+a \sec (c+d x)}}+\frac {16 a^2 \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{7 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (a+a \sec (c+d x))^{5/2} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.37, size = 74, normalized size = 0.47 \[ \frac {a^2 (101 \cos (c+d x)+24 \cos (2 (c+d x))+3 \cos (3 (c+d x))+208) \tan \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\sec (c+d x)+1)}}{42 d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(7/2),x]

[Out]

(a^2*(208 + 101*Cos[c + d*x] + 24*Cos[2*(c + d*x)] + 3*Cos[3*(c + d*x)])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d
*x)/2])/(42*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 100, normalized size = 0.64 \[ \frac {2 \, {\left (3 \, a^{2} \cos \left (d x + c\right )^{4} + 12 \, a^{2} \cos \left (d x + c\right )^{3} + 23 \, a^{2} \cos \left (d x + c\right )^{2} + 46 \, a^{2} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{21 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

2/21*(3*a^2*cos(d*x + c)^4 + 12*a^2*cos(d*x + c)^3 + 23*a^2*cos(d*x + c)^2 + 46*a^2*cos(d*x + c))*sqrt((a*cos(
d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x + c)))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sec \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^(5/2)/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

maple [A]  time = 1.74, size = 95, normalized size = 0.61 \[ -\frac {2 \left (3 \left (\cos ^{4}\left (d x +c \right )\right )+9 \left (\cos ^{3}\left (d x +c \right )\right )+11 \left (\cos ^{2}\left (d x +c \right )\right )+23 \cos \left (d x +c \right )-46\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\cos ^{4}\left (d x +c \right )\right ) \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {7}{2}} a^{2}}{21 d \sin \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x)

[Out]

-2/21/d*(3*cos(d*x+c)^4+9*cos(d*x+c)^3+11*cos(d*x+c)^2+23*cos(d*x+c)-46)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*c
os(d*x+c)^4*(1/cos(d*x+c))^(7/2)/sin(d*x+c)*a^2

________________________________________________________________________________________

maxima [B]  time = 0.75, size = 323, normalized size = 2.07 \[ \frac {\sqrt {2} {\left (315 \, a^{2} \cos \left (\frac {6}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 77 \, a^{2} \cos \left (\frac {4}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 21 \, a^{2} \cos \left (\frac {2}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) - 315 \, a^{2} \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {6}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) - 77 \, a^{2} \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {4}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) - 21 \, a^{2} \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {2}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 6 \, a^{2} \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 21 \, a^{2} \sin \left (\frac {5}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 77 \, a^{2} \sin \left (\frac {3}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 315 \, a^{2} \sin \left (\frac {1}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right )\right )} \sqrt {a}}{168 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

1/168*sqrt(2)*(315*a^2*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 77*
a^2*cos(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 21*a^2*cos(2/7*arctan2
(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 315*a^2*cos(7/2*d*x + 7/2*c)*sin(6/7*arct
an2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) - 77*a^2*cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7
/2*c), cos(7/2*d*x + 7/2*c))) - 21*a^2*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x
+ 7/2*c))) + 6*a^2*sin(7/2*d*x + 7/2*c) + 21*a^2*sin(5/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))
+ 77*a^2*sin(3/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 315*a^2*sin(1/7*arctan2(sin(7/2*d*x +
7/2*c), cos(7/2*d*x + 7/2*c))))*sqrt(a)/d

________________________________________________________________________________________

mupad [B]  time = 2.32, size = 96, normalized size = 0.62 \[ \frac {a^2\,\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (392\,\sin \left (c+d\,x\right )+98\,\sin \left (2\,c+2\,d\,x\right )+24\,\sin \left (3\,c+3\,d\,x\right )+3\,\sin \left (4\,c+4\,d\,x\right )\right )}{84\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(7/2),x)

[Out]

(a^2*cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x))^(1/2)*(392*sin(c + d*x) + 98*si
n(2*c + 2*d*x) + 24*sin(3*c + 3*d*x) + 3*sin(4*c + 4*d*x)))/(84*d*(cos(c + d*x) + 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(5/2)/sec(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________